Weightage

Note : subject weightage marks are only for reference

Topic

Weightage in Marks

Structures

 6–8 marks

Propulsion  6–8 marks
Aerodynamics  2–4 marks
Flight Mechanics  10–15 marks
Space Mechanics  8–10 marks
Mathematics  8-12 marks
General Aptitude  7–10 marks

GATE 2022 Syllabus For Aerospace – General Aptitude

This section includes questions based on Verbal Ability and Numerical Ability. The different topics included in the GATE syllabus for General Aptitude are as under

Verbal Ability

  1. English grammar,
  2. Sentence completion,
  3. Verbal analogies,
  4. Word groups,
  5. Critical reasoning and
  6. Verbal deduction.

Numerical Ability

  1. Computation of numerical values
  2. Estimation of numerical quantities
  3. Numerical reasoning and
  4. Data interpretation.

GATE 2021 Syllabus For Aerospace: Engineering Mathematics

The GATE syllabus for Engineering Mathematics is as under:

  • Linear Algebra: Matrix algebra; Systems of linear equations; Eigen values and Eigen vectors.
  • Calculus: Functions of single variable; Limit, continuity and differentiability; Mean value theorems, local maxima, and minima; Taylor series; Evaluation of definite and indefinite integrals, application of definite integral to obtain area and volume; Partial derivatives; Total derivative; Gradient, Divergence and Curl, Vector identities; Directional derivatives; Line, Surface, and Volume integrals.
  • Ordinary Differential Equation (ODE): First order (linear and non-linear) equations; higher order linear equations with constant coefficients; Euler-Cauchy equations; Laplace transform and its application in solving linear ODEs; initial and boundary value problems.
  • Partial Differential Equation (PDE): Fourier series; separation of variables; solutions of onedimensional diffusion equation; first and second order one-dimensional wave equation and two-dimensional Laplace equation.
  • Probability and Statistics: Sampling theorems; Conditional probability; Descriptive statistics – Mean, median, mode, and standard deviation; Random Variables – Discrete and Continuous, Poisson and Normal Distribution; Linear regression.
  • Numerical Methods: Error analysis. Numerical solutions of linear and non-linear algebraic equations; Newton’s and Lagrange polynomials; numerical differentiation; Integration by trapezoidal and Simpson’s rule; Single and multi-step methods for first-order differential equations.

GATE Syllabus For Aerospace 2022 Subject-Specific Section

Flight Mechanics

Core Topics:

Basics: Atmosphere: Properties, standard atmosphere. Classification of aircraft. Airplane (fixed wing aircraft) configuration and various parts;

Airplane performance: Pressure altitude; equivalent, calibrated, indicated air speeds; Primary flight instruments: Altimeter, ASI, VSI, Turn-bank indicator. Drag polar; takeoff and landing; steady climb & descent, absolute and service ceiling; cruise, cruise climb, endurance or loiter; load factor, turning flight, V-n diagram; Winds: head, tail & cross winds;

Static stability: Angle of attack, sideslip; roll, pitch & yaw controls; longitudinal stick fixed & free stability, horizontal tail position and size; directional stability, vertical tail position and size; dihedral stability. Wing dihedral, sweep & position; hinge moments, stick forces;

Special Topics:

Dynamic stability: Euler angles; Equations of motion; aerodynamic forces and moments, stability & control derivatives; decoupling of longitudinal and lateral-directional dynamics; longitudinal modes; lateral-directional modes.

Space Dynamics

Core Topics:

Central force motion, determination of trajectory and orbital period in simple cases.

Special Topics:

Orbit transfer, in-plane and out-of-plane.

Aerodynamics

Core Topics:

Basic Fluid Mechanics: Conservation laws: Mass, momentum (Integral and differential form);

Potential flow theory: sources, sinks, doublets, line vortex and their superposition; Viscosity, Reynolds number.

Airfoils and wings: Airfoil nomenclature; Aerodynamic coefficients: lift, drag and moment; Kutta-Joukoswki theorem; Thin airfoil theory, Kutta condition, starting vortex; Finite wing theory: Induced drag, Prandtl lifting line theory; Critical and drag divergence Mach number.

Compressible Flows: Basic concepts of compressibility, Conservation equations; One dimensional compressible flows, Fanno flow, Rayleigh flow; Isentropic flows, normal and oblique shocks, Prandtl-Meyer flow; Flow through nozzles and diffusers.

Special Topics:

Elementary ideas of viscous flows including boundary layers; Wind Tunnel Testing: Measurement and visualization techniques.

Structures

Core Topics:

Strength of Materials: States of stress and strain. Stress and strain transformation. Mohr’s Circle. Principal stresses. Three-dimensional Hooke’s law. Plane stress and strain; Failure theories: Maximum stress, Tresca and von Mises; Strain energy. Castigliano’s principles. Analysis of statically determinate and indeterminate trusses and beams. Elastic flexural buckling of columns.

Flight vehicle structures: Characteristics of aircraft structures and materials. Torsion, bending and flexural shear of thin-walled sections. Loads on aircraft.

Structural Dynamics:. Free and forced vibrations of undamped and damped SDOF systems. Free vibrations of undamped 2-DOF systems.

Special Topics:

Vibration of beams.

Theory of elasticity: Equilibrium and compatibility equations, Airy’s stress function.

Propulsion

Core Topics:

Basics: Thermodynamics, boundary layers and heat transfer and combustion thermochemistry.

Thermodynamics of aircraft engines: Thrust, efficiency and engine performance of turbojet, turboprop, turbo shaft, turbofan and ramjet engines, thrust augmentation of turbojets and turbofan engines. Aerothermodynamics of non-rotating propulsion components such as intakes, combustor and nozzle.

Axial compressors: Angular momentum, work and compression, characteristic performance of a single axial compressor stage, efficiency of the compressor and degree of reaction.

Axial turbines: Axial turbine stage efficiency

Centrifugal compressor: Centrifugal compressor stage dynamics, inducer, impeller and diffuser.

Rocket propulsion: Thrust equation and specific impulse, vehicle acceleration, drag, gravity losses, multi-staging of rockets. Classification of chemical rockets, performance of solid and liquid propellant rockets

PG specilization

IIT madras

  • Aerospace engineering

IIT kharagpur

  • Aerospace engineering

IIT Bombay

  • Aerodynamics
  • Dynamics & Control 
  • Aerospace Propulsion
  • Aerospace Structure

IIT guwahati

  • Aerodynamics and Propulsion
  • Computational Mechanics

IISC bangalore

  • Aerospace engineering